概率论与数理统计——第七周周三-边缘分布律及边缘密度

文章目录

边缘分布律及边缘密度引例1.边缘分布律例1:

2 . 边缘密度函数例 2 :

小练习题:例1:例2:例3:

图解:

边缘分布律及边缘密度

引例

1.边缘分布律

以二维表的形式给出:

例1:

设甲、乙两人各进行两次射击,他们每次的命中率分别为0.8和0.6。甲先射击,且甲全部命中时乙的命中率下降 10%,甲全部未命中时乙的命中率上升20%,甲命中1次时 乙不受影响。令X,Y分别表示甲、乙的命中次数, 分别求(X,Y )关于X,Y的边缘分布律

2 . 边缘密度函数

例 2 :

求解过程 (它的联合密度应该为e 的 -y 次方。)

小练习题:

例1:

例2:

例3:

图解:

二维随机变量的联合密度函数含有丰富的信息,主要有三个方面: (1)单变量的密度函数,即边缘密度函数; (2)利用边缘密度函数的信息去判别两个变量之间的相依关系,且利用相关系数去判断它们的相依程度; (3)当一个变量固定不变时,另一个变量如何变化,具有什么样的密度,这就是条件密度。

因此,确定边缘密度尤为重要。利用二维随机变量的联合密度函数求取边缘密度,在视频和习题中我们已经进行了大量的推演和练习。下面我们将利用图形可视化加深对边缘密度的理解。

clear;clc;

rou=0.3;

[x,y]=meshgrid(-3:0.05:3);

z=(1/(2*pi*sqrt(1-rou^2)))*exp((x.^2+y.^2-2*rou*x.*y)/(-2*(1-rou^2)));

ii=find(x<-1);

z(ii)=zeros(size(ii));

surf(x,y,z) %画曲面(带切面)

hold on

iii=find(x==-1);

plot3(x(iii),y(iii),z(iii),'--w','LineWidth',2) %画截痕

hold on

iiii=find(x==-1.2);

plot3(x(iiii),y(iiii),z(iiii),'--w','LineWidth',2) %显示截痕所围截面

hold on

text('Interpreter','latex',...

'String','$$f_X(c)=\int_{-\infty}^{+\infty}{f(c,y)dy}$$',...

'Position',[-3 1.5 0.17],...

'FontSize',24)

xlabel('X轴');

ylabel('Y轴');

zlabel('Z轴');

view(3)

%%% 图2的matlab 代码


怎么抓成年八哥-如何捕抓八哥
香水じゅん (香水纯,Kasui jun)人物百科资料及影视作品