在閱讀下文之前,請先謹記基本電荷已經於2019年5月20日在國際單位制中被精確定義。
以法拉第常數以及亞佛加厥常數定值
编辑
如果法拉第常數 F 以及亞佛加厥常數 NA 皆為獨立的常數,則可以以公式計算出基本電荷為
e
=
F
N
A
.
{\displaystyle e={\frac {F}{N_{\text{A}}}}.}
(換句話而言,相當於將一莫耳的電子所帶之電荷量以一莫耳為單位作切分,最後得單一一個電子所帶的電荷量)
這個方法並非當今最準確的方式,然而其仍是個相當合理且準確的方法,而實驗的方式如下所述。
在1865年,亞佛加厥常數首次 NA 由約翰·洛施密特所粗估,他以計算給定體積下粒子數目的方式估量出一個空氣分子的直徑。而現今我們可以透過X射線晶體學等方法測出極純的晶體(如矽)之原子間的確切距離和晶體的精確密度以得到極高度精準的 NA 值。從這項資訊來看,我們可以得出單一原子的質量(m),再結合已知的晶體莫耳質量得出: NA = M/m。
而 F 的值則可以直接以法拉第電解定律得出。法拉第電解定律以法拉第在1834年於電化學領域的研究為基底說明其定量化的相對關係。在電解實驗中,通過陽極到陰極線的電子以及在陽極或陰極上鍍上或鍍下的離子存在一一對應的關係。通過測量陽極或陰極的質量變化,以及通過導線的總電荷(可將電流對時間積分),並考慮離子的莫耳質量,可以推導出 F 。
該方法精確度的限制是 F 的測量:最佳實驗值的相對不確定度為 1.6 ppm,比其他現代測量或計算基本電荷的方法高約 30 倍。
油滴實驗
编辑
測量 e 的一種著名方法是密立根的油滴實驗。小油滴會在電場中以一個能平衡重力、粘度(在空氣中傳播)和電力作用的速度移動。根據油滴的大小和速度計算重力和粘度的作用程度能推導出電力。由於電力又是電荷和已知電場的乘積,因此可以準確計算油滴所帶的電荷。通過測量許多不同油滴的電荷,可以看出電荷都是單個基本電荷的整數倍,即 e 。
使用大小均勻的微小塑料球可以消除測量油滴大小的必要性。另外以通過調整電場強度使球體懸停不動能消除粘性引起的力。
散粒雜訊
编辑
任何電流都與來自各種來源的雜訊相關,而其中一種是散粒雜訊。散粒雜訊的存在是因為電流不是平滑的連續流動而是由一次通過一個的離散電子所組成。透過仔細分析電流的雜訊,可以計算出電子的電荷。這種方法首先由華特·蕭特基提出,如此可以確定出 e 的值,而其精度限制在幾個百分點之內。這種方法被用於第一次直接觀察羅伯特·勞夫林準粒子,並與分數量子霍爾效應有關。
以約瑟夫森常數以及克勞斯·馮·克利青常數定值
编辑
另一種測量基本電荷的準確方法是通過測量量子力學中的兩種效應來推斷它:約瑟夫森效應,某些超導結構中出現的電壓振盪;和量子霍爾效應,電子在低溫、強磁場和二維限制下的量子效應。該約瑟夫森常數是
K
J
=
2
e
h
,
{\displaystyle K_{\text{J}}={\frac {2e}{h}},}
其中 h 是普朗克常數。它可以使用約瑟夫森效應直接測量。
而馮·克利青常數是
R
K
=
h
e
2
.
{\displaystyle R_{\text{K}}={\frac {h}{e^{2}}}.}
它可以直接使用量子霍爾效應進行測量。
從這兩個常數可以推導出基本電荷:
e
=
2
R
K
K
J
.
{\displaystyle e={\frac {2}{R_{\text{K}}K_{\text{J}}}}.}
CODATA 方法
编辑
CODATA用來確定基本電荷的關係是:
e
2
=
2
h
α
μ
0
c
=
2
h
α
ε
0
c
,
{\displaystyle e^{2}={\frac {2h\alpha }{\mu _{0}c}}=2h\alpha \varepsilon _{0}c,}
其中 h 是普朗克常數, α 是精細結構常數, μ0 是真空磁導率, ε0 是真空介電常數, 而 c 是 光速,目前這個方程式反映了 ε0 和 α 之間的關係,而其他的都是固定值。因此兩者的相對標準不確定度將是相同的。